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The Feigenbaum phenomenon is studied by analyzing an extended renor- 
malization group map Jd. This map acts on functions 4 that are jointly analytic 
in a "position variable" (t) and in the parameter (#) that controls the period 
doubling phenomenon. A fixed point 4* for this map is found. The usual 
renormalization group doubling operator sg" acts on this function 4"  simply by 
multiplication of kt with the universal Feigenbaum ratio 6* =4.669201..., i.e., 
(.A/4")(/1, t ) -  @*(6*/z, t). Therefore, the one-parameter family of functions ~u*, 
~P*(t) = 4*(#, t), is invariant under ~ ' .  In particular, the function ~P6" is the 
Feigenbaum fixed point of .J/, while g~* represents the unstable manifold of ~ ' .  
It is proven that this unstable manifold crosses the manifold of functions with 
superstable period two transversally. 

KEY WORDS: Nonlinear functional equation; renormalization group; 
Feigenbaum phenomenon; computer-assisted proof; rigorous bounds on critical 
indices. 

1. D E F I N I T I O N  OF T H E  O P E R A T O R  .~' 

W e  presen t  in the fo l lowing  a n ew  a n d  m o r e  comple te  p roo f  of the Fe igen-  
b a u m  conjectures/1'2'6) s imi lar  to the ideas of Vul  a n d  K h a n i n  (31 (see also 
Vul  et al/41) 

The  p r o b l e m  we solve c an  be fo rmu la t ed  as fo l lows :  cons ide r  the set 
do  of func t ions  of two complex  var iab les  tt a n d  t tha t  are  ana ly t i c  in the 
d o m a i n  D = C 2. Here,  

D =  {]#[ < 1} • { I t -  1t < p }  
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with p -- 2. We next define ~4 as the subset of those ~ ~ do that take real 
values for real arguments # and t, and satisfy 

~(~, o )=  1 

~,(o, 1)=;. (1.1) 

0~ r 1 ) = g 

where 2 = -1/2.5029078750957 and g= 0.0005. As we shall see, these three 
equations fix the scale and the origin of the first variable # and the scale of 
the second variable t. We next choose a constant 8 = 0.23 and define the 
operator ~ by the following prescriptions: 

(a) Set 2(/~)= q5(5#, 1). 

(b) Define Jg'0q~(#, t) = 2(r -~ ~b(8#, (~b(8kt , 22(/~)t))2). 

(c) Determine #o as the solution of (J~oq~)(/xo, 1)= 2. 

(d) Define r=~?,(Jdo~b)(/Xo, 1). 

(e) Set (dc'q~)(#, t ) =  (~/0qs)(g#/z+#0, t). 

It is easy to see that if Jg is defined, then ~///lq~ satisfies the normalizations 
(1.1) of the set s~'. 

The choice of ~ will guarantee that ~oq~ is analytic in the same 
domain D as ~b, which is convenient for the use of the computer. (If ff were 
equal to 1, we would expect the action of /a' o to be dilation of the /~ 
argument by 6" ~4.66. Therefore it is adequate to choose ~ i/~*.) 

Below, we will equip a subset of s~r with a norm. We then use the com- 
puter to show that ~ '  is defined and is a contraction of a suitable ball in 
this subset of ~r This will allow us to conclude that ~r has a fixed point. 

2. O U T L I N E  OF T H E  P R O O F  

We now present the approach in more detail. We want to work with 
the space ~ of functions that are analytic on the product of two unit disks, 
equipped with the norm 

IlflJ = ~ Iful 
z,j 

where F(/x, t ) =  ~isf0#~t j, In view of the definition of ~4, we write ~ as 

with 
F(#, t) = , ~ -  1 +g/x+At+G(tx, t) 
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where G(/~, t) is of second order  in/~ and t, and A is a real number.  This 
choice of coordinates ensures the correct  normalizations.  Recall that p = 2. 

We discuss now briefly the various spaces int roduced so far. The  
functions F span a hyperplane Y '  of S of codimension 2. The map 
defined below will map  5 ~ to itself. The hyperplane 50' is a translate (by 
2. - 1 + @) of a linear subspace 5 ~ of 5(' (again of codimension 2), equip- 
ped with the same norm as 50, and D N  will map  5 ~ to itself. The norm of 
5 ~ induces by (2.1) a natural  norm on ~4, and we equip ~ with this norm. 

The prescriptions (a)- (e)  of Section 1 induce on 50' a map from F to a 
"new" F, called ~ F ,  which we describe now: 

(a) Compute  H(~t, t) = 1 + (pt + 1) F(l~, t). 
(b) Set 2(#) = H ( @ ,  0). 

(c) Define 

FI(#, l)= F (~//,)~2(#)t- )2(~)_p 1.) 

(d) Define F2(/~, t) = 22(#) FI(/~, t). 

(e) Define F3(#, t ) = 2 F 2 ( # ,  t )+(pt+ 1)F2(#,  t) 2. 

(f) Define H3( #, t) = 1 + (pt + 1) F3(#, t). 

(g) Finally, 

1 H(~p,~[H3(iz,  t ) _ l ]  ) tl =Y 5 

look for a #o solving H4(#o, 0) =)~ (h) Now 
~ = 63uH4(kto, 0). 

and define 

(i) Define Hs(#,  t) = Ha(@/r + #o, t). 
(j) ~ is finally given by ~ F ( # ,  t ) =  [Hs(p,  t ) -  1 ]/(pt + 1). 

We construct  (using a p rogram for nonr igorous  calculations) a polynomial  
Fo of degree 16, and we verify with a p rogram using rigorous error  bounds 
that 

I r ~ F o -  Foil < e  = 1.78 x 10 -1l 

We next check that  DN is a contract ion on a ball of radius/~ = 2.1 x 10 -l~ 
centered at F o. For  this, we write explicitly the tangent map  D~F 
(evaluated at F) acting on OF." 

6,~(~) = 6F(@, O) 

6H(#, t) = (pt + 1 ) 6F(#, t) 
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6F~(#, t) = 6F(Sl& )~2t + "" ") 

+ ~?tF(61~, 22t + " ")" 22- 6~" (t + l /p)  

6F2(2, t) = ;~[6F,(#, t)2 + F,(/~, t) 262] 

6F3(l& t )=26F2(# ,  t)[1 + ( p t +  1) F2(#, t)] 

6H3(/~, t) = (pt + 1 ) 6F3(#, t) 

c]H4(#, t) = 2 1{ __ (~)~H4 + 6H(61& [H3(#, t) - 1 ]/p) 

+OtH(6t~, [H3(u, t ) - 1 ] / p ) ' p  '6H3(u,  t)} 

8/~0 = - 6H4(#0, 0)/r 

6r = 3~, 6H4(#o, 0) + ~3~H4(#o , 0) C]Uo 

( D ~  F 3F)(#, t) = 3(~F)(p, t) --- 3Hs(g, t) /(pt + 1 ) 

We bound D~' as a map from 5 ~ to itself, by performing the following 
calculation. For a finite number of polynomial basis vectors 3F (namely 
#it J, with i+  j<. 16 and i+j>~ 2 or i =  0 and ./'= 1), and for a "higher order 
term" the program computes the norm of the image under D~F0~,, where 
F0~ is the ball of radius fl=2.1 • 10 -l~ centered at Fo mentioned above. 
The sup of these norms is a bound on the operator norm of D ~  F for every 
F~Fo~ and it turns out that this sup is bounded by cr=0.7645. Since 
e / (1 -  or)< fl, we see that ~ contracts the ball of radius fi into itself and 
therefore has a unique fixed point in this ball. Thus we have proved the 
following theorem. 

T h e o r e m  2.1. The map ~ has a fixed point F* in 50', and 
[IF* - Fell  < 5/(1 - ~) .  

We denote by H*, )~*,... the quantities obtained by applying (a)-(j) to 
F*. We then define the function ~* by the equation 

( - - ' - 1 )  
q)*(#, t ) =  l + tF* #* + l& P 

If #* were equal to 0, then we would find qs* e sO. Since #d' is not equal to 
0, the domain of analyticity of q~* is not D, but 

D* = {1~ + ~;'1 < 1} • { i t -  II < p }  

However, ~* still satisfies the normalizations (1.1) of the set ,~r 
Theorem 2.1 implies the following theorem. 
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T h e o r e m  2.2. The map J/g has a fixed point ~*. 

We study next the doubling operator X ,  which is defined by 

1 2) 
( x  ~')(t) = 7. ~'( [ ~u(;~2t)] 

where 2 = 7s(1 ). The operator X acts on functions ~ that are analytic in 

I={teCItt-ll<p} 

and normalized to ~ ( 0 ) =  1. Consider now the set of all functions ~P that 
are analytic in I, are normalized to ~ ( 0 ) =  1, and take real values for real 
arguments. We then call ~ the space we get when we equip these functions 
with the norm 

i = 1  

By construction, the function ~*(0, .) is a fixed point of Jg" (this is the 
celebrated Feigenbaum function). We next define 

%* = q~*(~, .) 

By construction, ~s*eJut~. The above results imply the following 
proposition. 

P r o p o s i t i o n  2.;3. The action of JV" on ~* is trivial, namely 

The constant 6*=  U#~H*(#~, 0) is called the "Feigenbaum constant" 
and occurs as a universal parameter in the theory of period-doubling bifur- 
cations of one-parameter families of maps of the unit interval (see, e.g., 
Ref. 2). Our computer-assisted proof gives bounds on this constant 6*: 

6*e [4.66920159, 4.669201622] 

R e m a r k  2.4. The preceding proposition shows that ~* is the 
unstable manifold of JV" at its fixed point. In addition, we see that it is an 
analytic manifold. Also, 

0, ~*1. o 

is the eigenvector with eigenvalue 6" of D~/V at ~ ' .  
We next indicate how we prove that the unstable manifold crosses 

transversally the manifold f formed by those functions of ~ that satisfy 
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f ( 1 ) = 0 ,  in addition to the normalization f ( 0 ) =  1. We consider a short 
piece of the unstable manifold 

g'* for #~ [0.3436, 0,4036] 

We then verify with our program that JV "4 is defined on these functions and 
maps them to functions analytic on the domain L We verify next that ~ is 
defined on Y47**, when we restrict the analyticity domain in t to 
{ I t -  I I < 1.2 }. We then check that 

(~/'5 ~/~= 0.4036)( 1 ) > 0 

and 

( y 5  ~r.t* = 0.3436)( 1 ) < 0 

and furthermore 

O~(Ys~*)(1)  r 0 for all /~ e [0.3436, 0.4036] 

This shows the following theorem. 

T h e o r e m  2.5. The unstable manifold of ~4r crosses the surface S 
transversally. 

R e m a r k  2.6. By a similar calculation we show that four iterations 
of ~ map the local unstable manifold transversally across the surface 22 M 
of "band merging functions," i.e., those functions satisfying 
f ( f ( 1 ) 2 )  = - f ( 1 ) .  

* (with the We next verify that ~ 5  is defined o n  ~r'/ge[0.09,0.4336] same 
restriction of domain for the fifth iteration as above). Since 
6*. 0.09 < 0.4336, this proves the following theorem. 

T h e or e m 2.7. The local unstable manifold of ~ extends from ~ '  
to X. 

Remark 2,8. We also verify that the local unstable manifold 
extends from g*~' to Xa4. 

3. T H E  C O M P U T E R - A S S I S T E D  P R O O F  

Computer-assisted proofs have by now a certain tradition, going back 
to Lanford's seminal paper/6) The general principles have been spelled out 
in detail in Refs. 7-9 (see also Ref. 12), The main ideas are as follows: On a 
computer, rigorous interval arithmetic is possible, cl~ and, in fact, 
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properly anticipated by a standard. (~3) The idea of interval arithmetic can 
be extended to arithmetic of balls in Banach spaces. In particular, consider 
the Banach space of analytic functions of one variable in the unit disk, with 
real Taylor coefficients when expanded at zero, equipped with the norm 

]lfl] = ~ If,.I 
i 

where f (z)= Zifez i. A ball N in this Banach space is defined by a set of 
n + 1 intervals Io ..... In and a nonnegative number u as follows: 

~(Io,...,In, u )={ f[ f ie l i ,  i=O ..... n, ~ [f,]~<u} 
i > n  

It is easy to see that given two balls ~ and r there is a finite algorithm 
constructing a new ball ~ "  of the same type such that 

f + f ' e ~ "  when f E N ,  f ' e ~ '  

(Take the sum of the components.) It can shown (8~ that the usual 
arithmetic operations (such as pointwise multiplication, composition, and 
differentiation) are all constructed in the same way as addition. Hence, they 
can be programmed on a computer. In fact, every estimate of the proof 
outlined in this paper can be programmed, including the bound on the 
tangent map. 

There are, however, two problems with programs of this type. The first 
problem is their unreadability, because current programming languages are 
not suitable for the kind of task needed here. The second problem is the 
large amount of relatively uninteresting code dealing with the operations 
described above. 

In order to make the proofs of this paper more readable, they have 
been implemented on a computer as follows: First a small programming 
language called "Mini" has been created. "Mini" is used to program a high- 
level language interface to a conventional programming language (Pascal). 
In "Mini" the user describes the kind of Banach spaces he wants to con- 
sider. (Below we show how this is done for our particular example.) This 
piece of program is then handed to the computer, which generates an 
extension of "Pascal," called "Lang," adapted to the problem in question 
and allowing for straightforward notation for things like addition, mul- 
tiplication, and composition of balls in function space. Furthermore, the 
computer also generates all the subroutines needed for the particular 
problem, inasmuch as the code can be inferred from the definition of the 
function space. This interface has been documented in detail elsewhere. (5) 
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We describe, informal ly ,  some of the detai ls  of this approach .  Firs t ,  we 
describe the balls in quest ion.  In  our  case, given n, we consider  

( 
.~C/, Uh, Ug)= ~ f 4 f(#, t)=~&pi/+ g(#, t), 

t. i , j  

f~jeIo, fori+j<~n, ~ [ L j [ < u h ,  Ijg]L<ug! 
i + j > n  ) 

This is p r o g r a m m e d  by defining two types p and b for po lynomia l s  and  
balls, respectively. F o r  the case of n =  16 one has to write the fol lowing 
piece of p rob lem in the high-level  l anguage  "Mini"  (u is a predefined type 
for upper  bounds ,  s is a predefined type for intervals) :  

t y p e  p - p o l y n o m i a l  o v e r  s 

c o n s t  n : 1 6 ;  

v a r  i ,  j : i n t e g 6 r  ; 

b e g i n  

f o r  i :  0 t o  n d o  

f o r  j : - 0  t o  n- i d o  

scoe f : s  ; 

e n d  ; 

t y p e  b - v e c t o r  o v e r  s 

b e g i n  

P:P; 

b o u n d  ug:u; 

b o u n d  uh:u; 

e n d ;  

Also, one has to describe the p roduc t  of two balls by specifying into which 
terms the var ious  cross- terms are to the accumula ted .  In "Min i"  this is 

p r o g r a m m e d  as follows: 

d e f i n e  b * b > b 

b e g i n  

p*p > p; 

p * uh > uh; 

uh * p - >  uh; 

uh * uh ~-> uh; 
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ug * ug -> ug; 

ug * uh -> uh; 

uh * ug -> uh; 

p * ug - > ug; 

ug * p -> ug; 

if it$1+it$2+imu$1§ then 

p �9 p - > uh; 

end; 

Finally, the composition is prepared in "Mini" by writing the single line 

define p o b; 

As mentioned above, the computer produces, using the above pieces of 
code, a set of subroutines for the basic estimates and a "Lang" compiler (or 
rather, Pascal preprocessor). "Lang" allows the programmer to write the 
problem in more or less standard mathematical notation. The following 
table shows the information file, which is also generated by "Mini," and 
which contains everything the user needs to known in order to be able to 
program in "Lang": 

INFOKNATION ON LOOPS F0R STRUCTURE p 

1. 

We represent the component(s) 

scoef 

of the structure p 

by array(s) [0..ioop$I]. 

The procedure init$1 (in initloops.p) initializes these arrays. 

The procedure init$$ calls all initSn. 

The program calcconst.p calculates the constant 

ioop$I 

INFGKMATION 0N SUBROUTINES 

The call pSHOW(p1) prints p1. 

The call bSHOW(bl) prints bl. 

pl:=0 is implemented as pI:=pZEK0 

51:=0 is implemented as b1:=bZEK0 

pl:=p2+p3 is implemented as pl:=pSUM(p2,p3) 

pl:=p2-p3 is implemented as pI:=pDIFF(p2,p3) 
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bl:=b2+b3 is 

bl:=b2-b3 is 

pl:=s2*p3 is 

bl:=s2*b3 is 

pl:= -p2 is 

bl:= -b2 is 

ul:=[p2[ is 

ul:=Ib2] is 

sl::p2(~=x3 

implemented as bl:=bSUM(b2,b3) 

implemented as b1:=bDIFF(b2,b3) 

implemented as pI:=psLMULT(s2,p3) 

implemented as b1:=bsLMULT(s2,b3) 

implemented as pI:=pNEG(p2) 

implemented as b1:=bNEG(b2) 

implemented as ul:=upABS(p2) 

implemented as ul:=ubABS(b2) 

,x~) is implemented as sI:=spVALUE(p2,x3,x4) 

p2 is a polynomial evaluated at xi, 

the argument(s) are of type s. 

pl:=p2(#:x3,y3,x4,y4) is implemented as p1:=pDILATE(p2,x3,y3,x4,y~) 

p2 is a polynomial evaluated at xi*(i'th variable)+yi. 

The xi and yi are of type s. 

p1:=p2*p3 is implemented as pI:=pPKOD(p2,p3) 

This is the truncated product of polynomials. 

p1:=l/p2, the inverse of p2, is implemented as pI:=pINV(p2) 

This is the truncated inverse of polynomials. 

The derivative of pl of order nimu,nit is implemented as 

pDEKIVE(pl,nimu,nit). 

b1:=b2*b3 is implemented as b1:=bPKOD(b2,b3) 

bl:=b2/b3 is implemented as bl:=bQUOT(b2,b3) 

bl:=l/b2, the inverse of b2, is implemented as b1:=bINV(b2) 

The product with bounds is given by 

the definition b * b -> b. 

If type comes from polynomials then identity is defined as bONE 

Composition bl:=p2(#=bimu,bit) is implemented as 

bl:=bpC0MP(p2,bimu,bit) 

As an example, we show below most of the "Lang" program com- 
puting D~ .  The gain of readability and therefore checkability of the 
problem over the older p r o o f ,  as, e.g., in Re[ 9, is evident. A ~w hints may 
be useful. Variables start with a letter indicating their type, thus: 

u... is an upper bound 
s... is an interval 
p... is a polynomial (with interval coefficients) 
b... is a ball 
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The opera t ions  have their usual meaning,  except that  

[u . . . ]  is an interval whose endpoints  are u... 
I x ] ,  where x is an integer expression, is the interval Ix,  x ]  
+ - u... is the interval [ - u .... + u... ] 
<s.. .  > is an interval whose endpoints  are the center of s. . .  
jb...f is the no rm of b. . .  
Is...I is sup .... . .  Ixl 

Finally, # signals subst i tut ion or evaluat ion in polynomials ,  and the 
meaning should be d e a r  f rom the context. 

3.1. The P r o g r a m  fo r  C o m p u t i n g  D ~  

{declarations} 

{n is 16} 

{ ) 

function ubound (k, j :integer ; ur:u):u; 

{computes bound on j'th derivative of x**k 

for j - 0 , I , 2  

} 

v a r  i:intoger ; 

ures,utemp:u; 

begin 

if j=O then ubound: ur**k 

else 

b e g i n  

i f  k < - j  t h e n  k : = j ;  

utemp:=uZEKO; 

u r , s : - -  Ek]*  E u r 3 * * ( k - j )  ] ; 

i f  j 2 t h e n  u r ,  s : = l E u r , s ] , C k - : i J !  ; 

w h i l e  u r e s . v a l u o > u t e m p . v a l u e  d o  

b e g i n  

utemp:=ures ; 

k : -k-~ I ; 

u~s:  = j [u~*u~os] �9 [~3 / [2- j],, 

822/46/3-4-3 
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e n d  {while}; 

ubound:=utemp; 

end{else}; 

end {ubound}; 

f u n c t i o n  u r a d i u s ( u l , u 2 : u ) : u ;  

{ t a k e s  max of a r g u m e n t s  and c h e c k s  

v a t  umax:u ; 

begin 

umax: umax2(ul,u2); 

if umax.value > 1 then 

begin 

writeln('radius too big');uSHOW(ul);uSHO~q(u2); 

umax: =uONE 

e n d ;  

mr adiu5 : ~--umax 

end; 

{ 

<-i} 

function bDILATE(barg:b; smulin, smuconst, stlin, stconst:s ):b; 

var bres:b; 

umax:u ; 

b e g i n  

bres .p:--barg.p(#:smulin, smuconst, stlin, stconst) ; 

umax: uradius('ismulini§ !stconst ); 

{higher} 

bres .uh:--uZEKO ; 

{general} 

bres .ug:-- barg. ug.ubound (0 , O,umax) 

--barg.uh*ubound(n+ 1, O,umax) ; 

bDILATE:-bres ; 

end; 

{ 
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f u n c t i o n  bDILATES (barg:b ; smulin, stlin:s) :b ; 

vat bres:b; 

umax:u 

begin 

bres .p: barg. p(#:smulin, sZER0, stlin, sZEK0) , 

umax :  uradius(ismulini,lstlinl) ; 

bres.ug:: barg.ug*ubound(O ,O,uzax); 

bres.uh:: barg.uh*ubound(n, l,O,umax); 

bDILATES:-bres; 

end; 

{ 

f u n c t i o n  bDERIVEDILATE(barg:b;szulin,smuconst,stlin,stconst:s):b; 

{~st derivative with rsspect to mu} 

v a r  b r e s : b ;  

u~ax:u ; 

begin 

bres.p:~pDERIVE(barg.p,1,0)(#:smulin,smuconst,stlin,s~const); 

[ . I r 

umax:---uradius (i smullnl + i smucOnst i, [s~lini§ is~c~ I); 

bres.uh:=uZEK0; 

bres.ug:= (barg.ug• ; 

bDEKIVEDILATE: bres; 

end; 

f u n c t i o n  sbVALUE(barg:b; smu, st:s):s ; 

v a r  u m a x : u ;  

b e g i n  

umax: ~urad• ( I [smui,lsti); 
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sbVALUE:- 

b a r g . p ( # = s m u , s t )  

+ + - ( b a r g . u g * u b o u n d ( O  ,O,umax))  

+ +-(barg.uh*ubound(n+1,0,umax)); 

end; 

f u n c t i o n  sbDEKIYEVALUE(barg:b;j:integer;smu,st:s):s; 

v a t  umax:u ; 

b e g i n  

sbDERIVEVALUE:= 

pDERIVE(barg, p, j ,0) (#=smu, st) 

+ + (harg. u~*ubound(O , j ,u=ax)) 

• + (barg.uh*ubound(n.~ 1,j,umax)); 

end; 

f u n c t i o n  bCOHP (barg,bzu,bt:b):b ; 

var bres:b; 

umax:u ; 

b e g i n  

bres: barg.p(#=bmu,bt); 

ureas: uradiu (Ibmul, ibt!); 
b r e s  . u g : - b r e s  .ug 

+ b a r g .  ug*ubound(O ,O,umax) 

-+ b a r g . u h * u b o u n d ( n  ~ 1, O,uraax) ; 

bCOHP:--bres ; 

e n d ;  

f u n c t i o n  bDEI~IVECOHP ( b a r g ,  bmu, b t : b )  :b ; 

{differentiate ~.r.~. t} 
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v a r  bres:b ; 

umax:u ; 

begin 

bres:_pDERIVE(barg.p, O, I) (#--bmu,bt) ; 

uzax:=uradius(]bmul, !btl,); 

bres.ug: bres.ug 

+barg .ug*ub0und(O ,1 ,umax)  

+ b a r g . u h * u b 0 u n d ( n §  

bDERIVECO2.~P:=bres ; 

end; 

function bFtoH(bF:b):b; 

var btemp:b; 

begin 

btezp:=bZEK0; 

bt emp. p. s coef [0, O] :- salpha ; 

btemp.p, scoef [0, I] :=srho; 

bFtoH:-bONE§ 

end; 

{ 

f u n c t i o n  bHtoF(bH:b):b ; 

v a r  pne~-,pt emp:p ; 

bres ,btemp,bt:b; 

i , j  ,k:integer ; 

b e g i n  

ptemp:= bH.p pONE; 

f o r  i : - O  to  n do  

f o r  j :=O t o  n i do  

ptemp, scoef [i, j] := 

<ptemp. scoef [i, j] > ; 

pnew:-~ p ZEKO ; 
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{compute (rho4 alpha/t)**( 1)*(bH.p-1)} 

for  i : - O  to  n do  

for  3:=0 to  n i do  

for  k:=O to  n - i - j  do  

pne~. scoef [i, j]:-- 

pnew. scoef [i, j]-~ 

ptemp, scoef [i,j+k]*(stO**k) ; 

{divide by the times t} 

ptemp:-pZERO; 

for i:-O to n do 

fo r  j : - I  t o  n i do  

ptemp.scoef[i,j-l]:- 

<pnew.scoef[i,j]/srho>; 

btemp: bZERO; 

btemp.p:=ptemp; 

bt:-bZERO; 

bt.p.scoei[O,O]:=salpha; 

bt.p.scoef[O,l]:-srho; 

bH:=bH-btemp*bt bONE; 

bres.p:-ptemp; 

b~.s  uV i Eib~ll/(s~ho Elsa~pholl)l; 
bres.uh:-uZERO; 

bHtoF:=bres; 

end; 

{ 

p r o c e d u r e  newton; 

v a r  sepsilon, snow,sbeta:s; 

i : i n t e g e r ;  

b e g i n  

{ f i n d  approximate  roo t}  
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{known gUeSS} 

smuO: sZERO; 

for  i: 1 to  20 do 

b e g i n  

sepsilon: bH4.p(#=smuO,stl)-slambdabar; 

stau: pDEKIVE(bH4.p,1,0)(#-smuO,stl); 

smuO:~smuO-sepsilon/stau; 

smuO:- <smuO>; 

end; 

{compute values at central guess} 

sepsilon:--sbVALUE(bH4,smuO,stl)-slambdabar; 

{increase interval to contain O} 

sepsilon.lover:-imin2(sepsilon.lower,iZERO); 

sepsilon.upper::umax2(sepsilon.upper,uZERO); 

snew:-- +-- unCONST(7.OE-02); 

r e p e a t  

sbeta: snew; 

stau:----sbDEKIVEVALUE(bH4, I, smuO§ stl) ; 

ShaW:-- sepsilon/stau; 

i f  n o t  EQUALs(sINTER(snew,sbeta),snew) t h e n  

b e g i n  

writeln('no contraction /or ZERO'); 

sSHOW(snew) ; 

end; 

until EQUALs(snew ,sbeta); 

smuO:=smuOTsbeta; 

e n d ;  

{ 
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p r o c e d u r e  tangent map; 

begin 

bdlambda:=bDILATES(bdF,ssigmabar,sZERO); 

bdH :_(srho*bt§ 

bdF1:~bCOHP(bdF,ssigmabar*bmu,btargl)+ 

[2]*bdlambda*blambda 

*bDE~IVECOHP(bF ,ssigmabar*bmu,btargl)*btrho; 

bdF2:-blambda* 

(bdFl*blambda4 [2]*bdlambda*bF1); 

bdF3: [2]*bdF2*bFtoH(bF2); 

bdH3:=(srho*bt§ 

bdH4: blambdainv* 

(-bdlambda*bH~ 

tstt*bdH3*bDEKIVECOMP(bH,ssigmabar*bmu,btarg2) 

+bCOHP(bdH,ssigmabar*bmu,btarg2) 

); 

sdmuO: sbVALUE(bdH4,smuO,stl)/stau; 

sdtau:=sbDEKIVEVALUE(bdH~,l,smuO,stl)+ 

sbDEKIVEVALUE(bH4 ,2,smuO,stl)*sdmuO; 

bdH5: bDILATE(bdH4,sepsilonbar/stau,smuO,sONE,sZEKO) 

§ sdtau*sepsilonbar/stau**2)*bmu 

+sdmuO*bONE 

)*bDERIVEDILATE(bH4,sepsilonbar/stau,smuO,sONE,sZERO); 

bdKF:=bHtoF(bdHB~b0NE 

,(srho*bt+salpha*b0NE) 

*((slambdabar-s0NE)*b0NE~sepsilonbar*bmu) 
) 

(slambdabar sONE)*b0NE-sepsilonbar*bmu; 
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writeln('norm ');uSH0~[(ibdl%F I); 

uresul$:=umax2(uresult, IbdKFl) ; 

end; 

( 
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b e g i n  {main} 

{the function mu, and t} 

bmu:=bZER0; 

bmu.p.scoef[l,0]:=s0NE; 

bt:-bZEK0; 

bt.p.scoef[0,1]:=s0NE; 

{coordinates} 

salpha: [I]; 

srho:~ [2] ; 

ssigmabar:-- sCONST (0.23) ; 

sepsilonbar:~sC0NST(0.0005); 

slambdabar: sCONST( 1.0/'2.5029078750957); 

{the function t§ 

btrho: bZEK0; 

btrho.p.scoef[0,O]:=s0NE/srho; 

btrho.p.scoef[0,1]:=s0NE; 

{the points 0,1, and the  

stO: salpha/srho; 

stl:=(s0NE-salpha)/srho; 

stt:zs0NE/srho; 

coefficient of t} 

{read in data and make bF} 

{Zinclude 'coefs.16.ins';} 
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{corresponding H} 

b H : = b F t o H ( b F ) ;  

{lambda(mu) -- f(scale*mu,1)} 

blambda:=bDILATES(bF,ssigmabar,sZEK0)+b0NE; 

blambdainv:=I/blambda; 

blambda2:=blambda*blambda; 

btargl:=blambda2*(bt st0*b0NE)§ 

bFl:=bC0MP(bF,ssigmabar*bmu,btargl); 

bF2:=blambda2*bF1; 

bF3:=bF2*((srho*bt+salpha*b0NE)*bF2~ [2]*b0NE); 

bH3:=bFtoH(bF3); 

btarg2:=stt*bH3+st0*b0NE; 

bH~:~bC0HP(hH,ssigmabar*bmu,btarg2)*blambdainv; 

newton; 

bHS:=bDILATE(bH~,sepsilonbar/stau,smu0,s0NE,sZEK0); 

bKF:=bHtoF(bHS); 

writeln('K-difierence ');uSHOW(ibRF bFi) ; 
writeln('bKF');bSHOW(bKF); 

uresult:=uZER8; 

writeln('higher'); 

bdF:=bZER0; 

bdF.uh:=u0NE; 
tangent_map; 

f o r  i : = O  t o  n d o  

f o r  j : = O  t o  n - i  d o  

i f  (i+j>-2) o r  ((i=O) and  ( j = l ) )  t h e n  
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b e g i n  

writeln(i,j); 

bdF:=bZER8; 

tangent_map; 

end; 

writeln('NOKM OF DR');uSHOW(uresult); 

e n d  {main};  
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