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The Feigenbaum phenomenon is studied by analyzing an extended renor-
malization group map .#. This map acts on functions @ that are jointly analytic
in a “position variable” (¢) and in the parameter (u) that controls the period
doubling phenomenon. A fixed point &* for this map is found. The usual
renormalization group doubling operator 4" acts on this function @* simply by
multiplication of u with the universal Feigenbaum ratio 8* =4.669201..., ie.,
(N D*Wp, t)=D*(0*, t). Therefore, the one-parameter family of functions v,
YE(1)=®d*(y, 1), is invariant under .4". In particular, the function W¢ is the
Feigenbaum fixed point of .4, while ¥* represents the unstable manifold of 4.
It is proven that this unstable manifold crosses the manifold of functions with
superstable period two transversally.

KEY WORDS: Nonlinear functional equation; renormalization group;
Feigenbaum phenomenon; computer-assisted proof; rigorous bounds on critical
indices.

1. DEFINITION OF THE OPERATOR .#

We present in the following a new and more complete proof of the Feigen-
baum conjectures'">* similar to the ideas of Vul and Khanin® (see also
Vul ef al. ™)

The problem we solve can be formulated as follows: consider the set
st of functions of two complex variables u and ¢ that are analytic in the
domain D c C2. Here,

D={lul<1}x{li—1]<p}
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with p =2. We next define </ as the subset of those @ € .o, that take real
values for real arguments u and ¢, and satisfy

D, 0)=1
&0, 1)=1 (1.1)
0,8(0,1)=¢

where A= —1/2.5029078750957 and &= 0.0005. As we shall see, these three
equations fix the scale and the origin of the first variable y and the scale of
the second variable . We next choose a constant ¢ =0.23 and define the
operator .# by the following prescriptions:

(a) Set A(u)=P(op, 1).

(b) Define M, ®(p, t)=Mp)™" Do, (P(Gu, A2(1)1))%).

(c) Determine uq as the solution of (.4, ®)(p,, 1) = 1.

(d) Define t=0,(AMP)(uo, 1)

(e) Set (AP)u, )= (MoP)eEp/t + o, 1).

It is easy to see that if .# is defined, then .# & satisfies the normalizations
(1.1) of the set .«/.

The choice of ¢ will guarantee that #,& is analytic in the same
domain D as @, which is convenient for the use of the computer. (If ¢ were
equal to 1, we would expect the action of .4, to be dilation of the u
argument by 0* ~4.66. Therefore it is adequate to choose 6 ~ 1/5*.)

Below, we will equip a subset of .« with a norm. We then use the com-
puter to show that .# is defined and is a contraction of a suitable ball in
this subset of 2. This will allow us to conclude that .# has a fixed point.

2. OUTLINE OF THE PROOF

We now present the approach in more detail. We want to work with
the space . of functions that are analytic on the product of two unit disks,
equipped with the norm

1Fl =3 1/l
Lj
where F(u, 1)=3; f;#'t’. In view of the definition of </, we write & as

By, t)=H<,u, %>=1+zF(y, i;) 2.1)

with
Flu, t)=A—1+éu+ At+ G, 1)
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where G(u, 1) is of second order in y and ¢, and A is a real number. This
choice of coordinates ensures the correct normalizations. Recall that p =2,

We discuss now briefly the various spaces introduced so far. The
functions F span a hyperplane ¥’ of ¥ of codimension 2. The map #
defined below will map .’ to itself. The hyperplane ¥’ is a translate (by
A—1+¢u) of a linear subspace #” of ¥ (again of codimension 2), equip-
ped with the same norm as %, and DZ will map &£ to itself. The norm of
% induces by (2.1) a natural norm on </, and we equip &/ with this norm.

The prescriptions (a}—(¢) of Section 1 induce on ¥’ a map from Fto a
“new” F, called #F, which we describe now:

(a) Compute H(u, 1) =1+ (pt+ 1) F(u, 1).

(b) Set A(u)=H(ou, 0).

(¢c) Define

22— 1
P )= F (o 2+ 2E=2)

(d) Define Fy(u, 1) =A*(u) Fi(u, 1).
(e) Define Fy(u, 1) =2F,(u, 1)+ (pt + 1) Fy(p, 1)
(fy Define Hy(u, 1) =1+ (pt+ 1) F3(u, ).
(g) Finally,

1 1
H,(u 1) =m—)H<5,U,; [Hs(p, 1) — 1])

(h) Now look for a pu, solving H,(u,,0)=41 and define
=0, Hyi, 0).

(i) Define Hs(u, 1) = Hy(Ep/t + o, 1).

(j) A is finally given by #F(y, t)=[Hs(p, t)—1}/(pt+1).
We construct (using a program for nonrigorous calculations) a polynomial

Fy of degree 16, and we verify with a program using rigorous error bounds
that

|RFy— Fol| <e=178x 10!

We next check that DZ is a contraction on a ball of radius f=2.1x 107,
centered at F,. For this, we write explicitly the tangent map D%,
(evaluated at F) acting on éF:

0A(u)=o0F(ap, 0)
OH(u, t)=(pt+ 1} 6F(p, 1}
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SF, (1, 1) = SF(Gu, A1+ )
+ 0, F(Gu, A2t+ ) 2484 (¢ + 1/p)
SFy(4, 1) = A[SF, (1, )4+ F (s, 1) 261]
OF3(p, 1)=20F,(p, )[1 + (pt + 1) Fy(u, 1)]
OHs(p, 1) = (pt+ 1) 6F3(, 1)
OH(p, 1) =A""{—0AH,+6H(op, [Hs(p, 1) —1]/p)
+0,H(Gp, [Hy(p, 1)—1]/p) - p ' 0H5(, 1)}
Opo = — 0H,(no, 0)/1
0t =10, 6H(po, 0) + 0% Hy(1o, 0) g

g 3 g
ot 1 =0ty (St o)+ (0~ S0 ) 2, (St o)

(DR OF) (i, 1) = O(RF) (1, 1) = 0Hs(u, 1)/ (pr + 1)

We bound DZ as a map from £ to itself, by performing the following
calculation. For a finite number of polynomial basis vectors 6F (namely
g/, with i+ j<16and i+ j>2 or i=0and j=1), and for a “higher order
term” the program computes the norm of the image under D%, where
Fop is the ball of radius f=2.1x10"'° centered at F, mentioned above.
The sup of these norms is a bound on the operator norm of DZ,. for every
FeFys and it turns out that this sup is bounded by o=0.7645. Since
¢/(1 — o)< B, we see that # contracts the ball of radius § into itself and
therefore has a unique fixed point in this ball. Thus we have proved the
following theorem.

Theorem 2.1. The map # has a fixed point F* in ¥', and
|F*—Fyll <¢/(1 —0a).

We denote by H*, 1*,... the quantities obtained by applying {a)-(j) to
F*. We then define the function &* by the equation

t—1
D*(u, t)=1+41tF* <u5“+u,—p—>

If u& were equal to 0, then we would find @* e /. Since p§ is not equal to
0, the domain of analyticity of @* is not D, but

D* = {p+pgl <1y x {1 1] <p}

However, @* still satisfies the normalizations (1.1) of the set .
Theorem 2.1 implies the following theorem.
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Theorem 2.2, The map .# has a fixed point @*.
We study next the doubling operator 4/, which is defined by

(W)= POPENT)

where A= ¥(1). The operator ./ acts on functions ¥ that are analytic in
I={teC|jt—1]<p}

and normalized to ¥(0)=1. Consider now the set of all functions ¥ that
are analytic in /, are normalized to ¥(0)=1, and take real values for real
arguments. We then call # the space we get when we equip these functions
with the norm

1 .
121, = ). ﬂla;qlltzl

i=1
By construction, the function @*(0,-) is a fixed point of 4" (this is the
celebrated Feigenbaum function). We next define
=D, )
By construction, ¥ e#. The above results imply the following
proposition.

Proposition 2.3. The action of 4" on ¥} is trivial, namely
NPE=YE,

The constant 6* = £/0, H¥ (ug, 0) is called the “Feigenbaum constant”
and occurs as a universal parameter in the theory of period-doubling bifur-
cations of one-parameter families of maps of the unit interval (see, e.g.,
Ref. 2). Our computer-assisted proof gives bounds on this constant §*:

0% € [4.66920159, 4.669201622 ]

Remark 2.4. The preceding proposition shows that ¥} is the
unstable manifold of 4" at its fixed point. In addition, we see that it is an
analytic manifold. Also,

au Wﬂu:o

is the eigenvector with eigenvalue 6* of DA at WP¥.
We next indicate how we prove that the unstable manifold crosses
transversally the manifold 2 formed by those functions of J# that satisfy
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f(1}=0, in addition to the normalization f{0)=1. We consider a short
piece of the unstable manifold

P*  for pe[0.3436,0.4036]

u

We then verify with our program that .#* is defined on these functions and
maps them to functions analytic on the domain I. We verify next that .4 is
defined on A 4?’;", when we restrict the analyticity domain in ¢ to
{lr—1] <1.2}. We then check that

(NP _ .4036)(1) >0
and
(N W% _o3436)(1) <O
and furthermore
0 (ANPH)(1)#£0  forall pe[0.3436,0.4036]

This shows the following theorem.

Theorem 2.5. The unstable manifold of A" crosses the surface X
transversally.

Remark 2.6. By a similar calculation we show that four iterations
of 4" map the local unstable manifold transversally across the surface 2,
of “band merging functions,” ie, those functions satisfying

fUAA?)=—f(1).

We next verify that A7 is defined on ¥¥_ (000043367 (With the same
restriction of domain for the fifth iteration as above). Since
0*-0.09 <0.4336, this proves the following theorem.

Theorem 2.7. The local unstable manifold of A" extends from ¥§
to 2.

Remark 2.8. We also verify that the local unstable manifold
extends from ¥ to X,.

3. THE COMPUTER-ASSISTED PROOF

Computer-assisted proofs have by now a certain tradition, going back
to Lanford’s seminal paper.'® The general principles have been spelled out
in detail in Refs. 7-9 (see also Ref. 12). The main ideas are as follows: On a
computer, rigorous interval arithmetic is possible,">'" and, in fact,
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properly anticipated by a standard.”"*’ The idea of interval arithmetic can
be extended to arithmetic of balls in Banach spaces. In particular, consider
the Banach space of analytic functions of one variable in the unit disk, with
real Taylor coefficients when expanded at zero, equipped with the norm

IA1=3 i

where f(z)=Y, f;z". A ball # in this Banach space is defined by a set of
n+ 1 intervals I,,..., I, and a nonnegative number u« as follows:

B(ly,..., 1, u)s{f|f,-eli, i=0,,n Y |fi Su}

i>n

It is easy to see that given two balls # and #’, there is a finite algorithm
constructing a new ball #” of the same type such that

f+feB” when fed, f'ed

(Take the sum of the components.) It can shown® that the usual
arithmetic operations (such as pointwise multiplication, composition, and
differentiation) are all constructed in the same way as addition. Hence, they
can be programmed on a computer. In fact, every estimate of the proof
outlined in this paper can be programmed, including the bound on the
tangent map.

There are, however, two problems with programs of this type. The first
problem is their unreadability, because current programming languages are
not suitable for the kind of task neceded here. The second problem is the
large amount of relatively uninteresting code dealing with the operations
described above.

In order to make the proofs of this paper more readable, they have
been implemented on a computer as follows: First a small programming
language called “Mini” has been created. “Mini” is used to program a high-
level language interface to a conventional programming language (Pascal).
In “Mini” the user describes the kind of Banach spaces he wants to con-
sider. (Below we show how this is done for our particular example.) This
piece of program is then handed to the computer, which generates an
extension of “Pascal,” called “Lang,” adapted to the problem in question
and allowing for straightforward notation for things like addition, mul-
tiplication, and composition of balls in function space. Furthermore, the
computer also generates all the subroutines needed for the particular
problem, inasmuch as the code can be inferred from the definition of the
function space. This interface has been documented in detail elsewhere.”’
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We describe, informally, some of the details of this approach. First, we
describe the balls in question. In our case, given n, we consider

B uy, u,) = {fw Fn =Y fyu't' + g, 1),

ij
f‘ijEIija fori+j<na Z Iﬁjlguhv ||gH<ug}
i+j>n

This 1s programmed by defining two types p and b for polynomials and
balls, respectively. For the case of n=16 one has to write the following
piece of problem in the high-level language “Mini” (u is a predefined type
for upper bounds, s is a predefined type for intervals):

type p - polynomial over s
const n=16;
var i,Jj:integer;
begin
for i:-0 to n do
for j:=0 to n-1i do

scoef:s;

end;

type b = vector over s
begin

PP

bound ug:u;

bound uh:u;

end;

Also, one has to describe the product of two balls by specifying into which
terms the various cross-terms are to the accumulated. In “Mini” this is
- programmed as follows:

define b * b —> b
begin

P*pP —>P;

P * uh —> uh;
uh * p —> uh;
uh * uh - > uh;
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ug * ug —> ug;
ug * uh —> uh;
uh * ug —> uh;
p * ug —> ug;
ug * p —> ug;
if 1t$1+3it$24imu$1+imu$2>n then
P *p —> uh;

end;
Finally, the composition is prepared in “Mini” by writing the single line
define p o b;

As mentioned above, the computer produces, using the above pieces of
code, a set of subroutines for the basic estimates and a “Lang” compiler (or
rather, Pascal preprocessor). “Lang” allows the programmer to write the
problem in more or less standard mathematical notation. The following
table shows the information file, which is also generated by “Mini,” and
which contains everything the user needs to known in order to be able to
program in “Lang™:

INFORMATION ON LOOPS FOR STRUCTURE p

1.

We represent the component(s)

scoel

of the structure p

by array(s) [0..loop$1].

The procedure init$1 (in initloops.p) initializes these arrays.
The procedure init$$ calls all init$n.

The program calcconst.p calculates the constant

loop$1

INFORMATION ON SUBROUTINES

The call pSHOW(p1) prints pil.

The call bSHOW(bi) prints bil.

p1:=0 is implemented as pl:=pZERD

b1:=0 is implemented as bi:=bZERD

pl:=p2+p3 is implemented as pl:=pSUM(p2,p3)
pl:=p2-p3 is inplemented as pl:=pDIFF(p2,p3)
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bl:=b2+b3 is implemented as b1l:=bSUM(b2,b3)
bi:=b2-b3 is implemented as bil:=bDIFF(b2,b3)
pl:=s2*p3 is implemented as p1:=psLMULT(s2,p3)
bl:=s2*b3 is implemented as bil:=bsLMULT(s2,b3)

Pl:= -p2 is implemented as pil:=pNEG(p2)
bl:= ~b2 is implemented as bi:=bNEG(b2)

[H

ul:=|p2| is implemented as ul:=upiABS(p2)
ul:=|b2| is implemented as ul:=ubABS(b2)
51:=p2(##=x3,x4) is implemented as s1:=spVALUE(p2,x3,x4)
P2 is a polynomial evaluated at xi,
the argument(s)} are of type s.
p1:=p2(#¥:x3,y3,x4,y4) is implemented as p1:=pDILATE(p2,x3,y3,x4,y4)
P2 is a polynomial evaluated at xi*(i’th variable)+yi.
The xi and yi are of type s.
pl:=p2#p3 is implemented as p1:=pPROD(p2,p3)
This is the truncated product of polynomials.
pl:=1/p2, the inverse of p2, is implemented as pil:=pINV(p2)
This is the truncated inverse of polynomials.
The derivative of pl of order nimu,nit is implemented as
pDERIVE(p1,nimu,nit).
b1:=b2*b3 1s implemented as b1:=bPROD(b2,b3)
b1:=b2/b3 is implemented as bi1:=bQUOT(b2,b3)
b1:=1/b2, the inverse of b2, is implemented as bi:=bINV(b2)
The product with bounds is given by
the definition b * b -> b.
If type comes from polynomials then identity is defined as bONE
Composition bil:=p2(#=bimu,bit) is implemented as
b1:=bpCOMP(p2,bimu,bit)
As an example, we show below most of the “Lang” program com-
puting DZA. The gain of readability and therefore checkability of the

problem over the older proofs, as, e.g., in Ref. 9, 1s evident. A few hints may
be useful. Variables start with a letter indicating their type, thus:

... i1s an upper bound

s... is an interval

p... is a polynomial (with interval coefficients)
b...is a ball
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The operations have their usual meaning, except that

[u...] is an interval whose endpoints are u...

[x], where x is an integer expression, is the interval [x, x]
+ —u... is the interval [ —u..., +u...]

{s...» is an interval whose endpoints are the center of s...
|6...] is the norm of b...

s...| is sup, . |x]|

Finally, # signals substitution or evaluation in polynomials, and the
meaning should be clear from the context.

3.1. The Program for Computing D#

{declarations}

{n is 16}

{ }

function ubound(k,j:integer;uru)mu;

{computes bound on j'th derivative of x**k
for 3=0,1,2
}
var i:integer;
ures,utemp:u;
begin
if j=0 then ubound:—ur#k
else
begin
if k<=3 then k:=j;
utemp:=uZERQD;
ures::}[k]*[ur]**(k*j)!;
if j=2 then ures:=|[uresl*[k—11;
while ures.value>utemp.value do
begin
utemp:=ures;
kiz=k+1;
ures::}[ur*ures]*[k]/[k—j]j;

822/46/3-4-3
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end {vhile};

ubound:=utenp;

end{else};
end {ubound};

{ }

function uradius(ui,u2:u):u;

{takes max of arguments and checks <=1}

var umax:u;

begin

umax:--umax2{ui,u2);

if umax.value > 1 then

begin
writeln(’radius too big’);uSHOW(u1);uSHOW(n2);
umax:=u0NE

end;

uradius:=umax

end;

{ }

function bDILATE(barg:b;smulin,smuconst,stlin,stconst:s):b;
var bres:b;

umax:u;
begin

bres.p:=barg.p(#:smulin,smuconst,stlin,stconst);
umax:—uradius( ‘ismulinH smuconsti, stlin! gstconst };

{higher}
bres.uh:=uZERQ;
{general}
bres.ug:= barg.ug*ubound(C¢ ,0,umax)
+barg.uh*ubound(n+1,0,umax);
bDILATE:—=bres;

end;

{ }
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function bDILATES(barg:b;smulin,stlin:s):b;
var bres:b;

umax:u;
begin
bres.p:=barg.p(#:smulin,sZERO,st1lin,sZERD);

- ! . ! i .
umax: uradius('smulinf,|stlin;);

bres.ug:'f barg.ug*ubound(o ,0,umax);

bres.uh:: barg.uh*ubound{(n-+1,0,umax);
bLDILATES: - bres;

end;

{ }

function bDERIVEDILATE(barg:b;smulin,smuconst,stlin,stconst:s):b;
{1st derivative with respect to mu}
var bres:b;

umax:u;
begin
bres.p:=pDERIVE(barg.p,1,0)(#:smulin,smuconst,stlin,stconst);

. | - | ( - L
1.unax::ura.dlus(|smul:m|jL ismuconstj, lstlln’T |stconst|) ;

bres.uh:=uZERQ;

bres.ug:= {(barg.ug-barg.uh)*ubound(0,1, smulin‘—l—lsmuconstf);
bDERIVEDILATE:=bres;

end;

{ }

function sbVALUE(barg:b;smu,st:s):s;

var umax:u;
begin

umax:=uradius ( ismuj )|t [ );
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sbVALUE:=
barg.p(#=smu,st)
+ +~(barg.ug*ubound(0 ,0,umax))
+ +—(barg.uh*ubound(n+1,0,unax));
end;

{ }

function sbDERIVEVALUE(barg:b; j:integer;smu,st:s):s;
var umax:u;
begin
umax:=uradius(|smu|, st ’ ¥
sbDERIVEVALUE: =
pDERIVE(barg.p,j,0) (#=smu,st)
+ +—({(barg.ug*ubound(0 ,Jj,umax))
+ +- (barg.uh*ubound(n 1,j,umax));

end;

function bCONP(barg,bmu,bt:b):b;
var bres:b;

umax:u;
begin
bres:=barg.p(#=bmu,bt);
umax:—uradius( ‘[bmu} , bt 3 );
bres.ug:=bres.ug

+barg.ug*ubound(0 ,0,umax)

4 barg.uh*ubound(n{1,0,umax);

bCOMP:=bres;

end;

{ }

function bDERIVECOHMP (barg,bmu,bt:b):b;

{differentiate w.r.t. t}
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var bres:b;
umax:u;
begin
bres:=pDERIVE(barg.p,0,1) (#=bmu,bt);

umax:=uradius(|bmu/, |[bt);

bres.ug:=bres .ug
+barg.ug*ubound(0 ,1,umax)
-+barg.uh*ubound(n+1,1,umax);

bDERIVECONP:=bres;

end;

469

{

function bFtoH(bF:b):b;

var btemp:b;

begin
btemp:=bZERO;
btenp.p.scoef[0,0]:=salpha;
btemp.p.scoef[0,1]:=srho;
bFtoH: =bONE+btemp*bF;

end;

{

function bHtoF(bH:b):b;
var pnevw,ptemp:p;
bres,btemp,bt:b;
1,},k:integer;
begin
ptemp:—bH.p - pONE;
for i:=0 to n do
for j:=0 to n—1i do
ptemp.scoef[i,j]:=
<ptemp.scoef[i,jl>;
pnew:--pZERD;
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{compute (rho#—alpha/t)**(71)*(bH.p71)}
for 1:=0 to n do
for j:=0 to n—-1i do
for x:=0 to n—-i-j do
pnev.scoef[i,jl:=
pneu.scoef[i,j]+
ptemp.scoef[i,j+k]l*(st0*xxk);

{divide by rho times t}
ptemp:=pZERD;
for i:=0 to n do
for j:=1 to n—1i do
ptemp.scoef[i,j—1]:=
<pnew.scoef[i,]] /srho>;

btemp:=bZERD;

btemp.p:=ptemp;

bt:=bZERD;
bt.p.scoef[0,0]:=salpha;
bt.p.scoef[0,1]:=srho;
bH:=bH-btemp*bt - bONE;
bres.p:=ptenp;

bres .ug::i [‘bH‘]/(srhoA [‘salphai])
bres.uh:—uZERO;

bHtoF:=bres;

end;

{

Eckmann and Wittwer

-

procedure newton;

var sepsilon,snew,sbeta:s;
i:integer;

begin

{find approximate root}
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{known guess}

smu0:=sZERO;

for i:--1 to 20 do

begin
sepsilon:=bH4.p(#=smul,st1)-slambdabar;
stau:=pDERIVE(bH4.p,1,0) (#=-smud,st1);
smuO::smuO~sepsilon/stau;
smul: = <smul>;

end;

compute values at central guess
P g

sepsilon:=sbVALUE(bH4,smu0,st1) ~slambdabar;

{increase interval to contain 0}

sepsilon. lover:=1min2(sepsilon.lower, 1ZERD);

sepsilon.upper:=umax2(sepsilon.upper,uZERD);

snew:= +-— unCONST(7.0E—02);
repeat

sbeta:—snew;

stau:—sbDERIVEVALUE(bH4,1,smu0+sbeta,st1);

snew:= fsepsilon/stau;

if not EQUALs(sINTER(snew,sbeta),snew) then

begin
writeln(’no contraction for ZERD’);
sSHOW(snew);
end;
until EQUALs(snew ,sbeta);

smu0:=smu0+sbeta;

end;

471
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procedure tangent _map;

begin

bdlambda:=bDILATES(bdF,ssigmabar, sZERD);
bdH :=(srho*bt+salpha*bONE)*bdF;
bdF1:=bCOMP(bdF,ssigmabar*bmu,btargl)+
[2]*bdlambda*blambda
*bDERIVECOHP (bF ,ssigmabar*bmu,btargl)*btrho;
bdF2:=blambdax*
(bdF1*blambda-+ [2]*bdlambda*bF1);

bdF3:- [21*bdF2*bFtoH(bF2);
bdH3:= (srho*bt+salpha*bONE) *bdF3;

bdH4:=blambdainv*

( —bdlambda*bH4
+stt*bdH3*bDERIVECOMP (bH, ssigmabar*bmu,btarg2)
+bCOMP(de,ssigmabar*bmu,btarg2)

)

sdmuO::fstALUE(deQ,smuO,sti)/stau;
sdtau:=sbDERIVEVALUE(bdH4,1,smu0,st1) +
sbDERIVEVALUE(bH4 ,2,smu0,st1)*sdmul;

bdHb: = bDILATE(de4,sepsilonbar/stau,smuO,sONE,SZERO)
+((——sdtau*sepsilonbar/stau**2)*bmu
+ sdmuO*bONE
)*bDERIVEDILATE(bH4,sepsilonbar/stau,smuO,sONE,sZERO);

bdRF:=bHtoF (bdH5+ bONE
+ (srho*bt +salpha*bONE)
*( (slambdabar —sONE)*bONE+sepsilonbar*bmu)
)
—(slambdabar —sONE)*bONE-sepsilonbar*bmu;
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writeln{’norm="’);uSHOW( ;bdRF‘ );
bdRF|) ;

uresult:=umax2{uresult,

end;

begin {main}

{the function mu, and %}
bmu:=bZERO;
bmu.p.scoef[1,0]:=sONE;
bt:=bZERD;
bt.p.scoef[0,1]:=s0NE;

{coordinates}

salpha:=[1];

srho:-=[2];
ssigmabar:=sCONST(0.23);
sepsilonbar:=sCONST(0.0005);

slambdabar:- sCONST({-1. 0/’2 .5029078750957);

{the function t-+ 1/rho}
btrho:=bZERO;
btrho.p.scoef[0,0]::sONE/srho;
btrho.p.scoef[0,1]:=s0NE;

{the points 0,1, and the coefficient of t}
st0:=-- salpha/srho;
st1::(sONE—sa1pha)/srho;

stt:stNE/srho;

{read in data and make bF}

{/include ’coefs.16.ins’;}
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{corresponding H}
bH:=bFtoH(bF);

{lambda{mu) = f(scale*mu,1)}
blambda:=bDILATES(bF,ssigmabar,sZERD)+bONE;
blanbdainv:=1/blanbda;
blambda2:=blambda*blambda;

btargl:=blambda2* (bt —st0*bONE)+st0*bONE;
bF1:=bCOMP(bF,ssigmabar*bmu,btargl);
bF2:=blambda2*bF1;

bF3:=bF2*( (srho*bt+salpha*bONE)*bF24 [2]*bONE);

bH3:=bFtoH(bF3);
btarg2:=stt*bH3+st0*bONE;
bH&::bCOMP(bH,ssigmabar*bmu,btarg2)*blambdainv;

newton;

bHS::bDILATE(bHQ,sepsilonbar/stau,smuO,sONE,sZERD);
bRF:=bHtoF(bHb);

writeln(’R—diiierence:’);uSHOW(‘bRFWbFi);
vriteln(’bRF’);bSHOW(LRF);
uresult:—uZERD;

writeln(’higher’);
bdF:=bZERO;
bdF . uh:=u0NE;

tangent _map;

for i:=0 to n do
for j:=0 to n—-1i do
if (i4+3j>=2) or ((i=0) and (j=1)) then
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begin

writeln(i,j);
bdF:=bZERD;

tangent _map;

end;
writeln( ’NORM OF DR’);uSHOW(uresult);

end {main};
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